Luca's meaningless thoughts   SponsorGitHub SponsorsLiberapayPaypalBuy Me A CoffeePatreonFlattr

Recursive vs. iterative marking

by Leandro Lucarella on 2010- 08- 30 00:54 (updated on 2010- 08- 30 00:54)
tagged benchmark, cdgc, d, dgc, en, gc, iterative, mark, performance, recursive - with 0 comment(s)

After a small (but important) step towards making the D GC truly concurrent (which is my main goal), I've been exploring the possibility of making the mark phase recursive instead of iterative (as it currently is).

The motivation is that the iterative algorithm makes several passes through the entire heap (it doesn't need to do the full job on each pass, it processes only the newly reachable nodes found in the previous iteration, but to look for that new reachable node it does have to iterate over the entire heap). The number of passes is the same as the connectivity graph depth, the best case is where all the heap is reachable through the root set, and the worse is when the heap is a single linked list. The recursive algorithm, on the other hand, needs only a single pass but, of course, it has the problem of potentially consuming a lot of stack space (again, the recurse depth is the same as the connectivity graph depth), so it's not paradise either.

To see how much of a problem is the recurse depth in reality, first I've implemented a fully recursive algorithm, and I found it is a real problem, since I had segmentation faults because the (8MiB by default in Linux) stack overflows. So I've implemented an hybrid approach, setting a (configurable) maximum recurse depth for the marking phase. If the maximum depth is reached, the recursion is stopped and nodes that should be scanned deeply than that are queued to scanned in the next iteration.

Here are some results showing how the total run time is affected by the maximum recursion depth:

https://llucax.com/blog/posts/2010/08/29-recursive-dil.png https://llucax.com/blog/posts/2010/08/29-recursive-voronoi.png

The red dot is how the pure iterative algorithm currently performs (it's placed arbitrarily in the plot, as the X-axis doesn't make sense for it).

The results are not very conclusive. Even when the hybrid approach performs better for both Dil and Voronoi when the maximum depth is bigger than 75, the better depth is program specific. Both have its worse case when depth is 0, which makes sense, because is paying the extra complexity of the hybrid algorithm with using its power. As soon as we leave the 0 depth, a big drop is seen, for Voronoi big enough to outperform the purely iterative algorithm, but not for Dil, which matches it near 60 and clearly outperforms it at 100.

As usual, Voronoi challenges all logic, as the best depth is 31 (it was a consistent result among several runs). Between 20 and 50 there is not much variation (except for the magic number 31) but when going beyond that, it worsen slowly but constantly as the depth is increased.

Note that the plots might make the performance improvement look a little bigger than it really is. The best case scenario the gain is 7.5% for Voronoi and 3% for Dil (which is probably better measure for the real world). If I had to choose a default, I'll probably go with 100 because is where both get a performance gain and is still a small enough number to ensure no segmentation faults due to stack exhaustion is caused (only) by the recursiveness of the mark phase (I guess a value of 1000 would be reasonable too, but I'm a little scared of causing inexplicable, magical, mystery segfaults to users). Anyway, for a value of 100, the performance gain is about 1% and 3.5% for Dil and Voronoi respectively.

So I'm not really sure if I should merge this change or not. In the best case scenarios (which requires a work from the user to search for the better depth for its program), the performance gain is not exactly huge and for a reasonable default value is so little that I'm not convinced the extra complexity of the change (because it makes the marking algorithm a little more complex) worth it.

Feel free to leave your opinion (I would even appreciate it if you do :).

The Yes Men Fix The World

by Leandro Lucarella on 2010- 08- 23 22:54 (updated on 2010- 08- 23 22:54)
tagged creative commons, en, movie, p2p, the yes men, the yes men fix the world, torrent, vodo - with 0 comment(s)

I once recommended The Yes Men, now their new movie, The Yes Men Fix The World is officially available for download in Vodo (HD and mobile versions included) via BitTorrent. There are subtitles for several languages (more are coming) and you can donate to The Yes Men so they can film their next movie.

Great mov(i)e!

CDGC first breath

by Leandro Lucarella on 2010- 08- 23 02:03 (updated on 2010- 08- 23 02:03)
tagged cdgc, concurrent, d, dgc, en, fork, gc, pause time, stop-the-world - with 0 comment(s)

I'm glad to announce that now, for the first time, CDGC means Concurrent D Garbage Collector, as I have my first (extremely raw and unoptimized) version of the concurrent GC running. And I have to say, I'm very excited and happy with the results from the very small benchmark I did.

The stop-the-world (pause) time was reduced by 2 orders of magnitude for the average, the standard deviation and, probably the more important, the maximum (these are the results for a single run, measuring the pause time for all the collections in that run). This is good news for people needing (soft) real-time in D, even when using the GC. Where the standard D GC have a pause time of 100ms, the CDGC have a pause time of 1ms.

The total run-time of the program was increased a little though, but not as much as the pause time was reduced. Only a 12% performance loss was measured, but this is just the first raw unoptimized version of the CDGC.

All this was measured with the voronoi benchmark, with -n 30000. Here are some plots:

https://llucax.com/blog/posts/2010/08/22-cdgc-stw-pause-time.png https://llucax.com/blog/posts/2010/08/22-cdgc-stw-run-time.png

Please note that the GC still has a global lock, so if 2 threads needs to allocate while the collection is running, both will be paused anyways (I have a couple of ideas on how to try to avoid that).

The idea about how to make the GC concurrent is based on the paper Nonintrusive Cloning Garbage Collector with Stock Operating System Support. I'm particularly excited by the results because the reduction of the pause time in the original paper were less than 1 order of magnitude better than their stop-the-world collector, so the preliminary results of the CDGC are much better than I expected.

Cazadores de sueños

by Leandro Lucarella on 2010- 08- 22 15:54 (updated on 2010- 08- 22 15:54)
tagged 2010, basquet, cazadores de sueños, deporte, es, turquía, tyc, video, youtuve - with 0 comment(s)

Se viene el mundial de basquet...

The Suburbs Unstaged

by Leandro Lucarella on 2010- 08- 21 22:03 (updated on 2010- 08- 21 23:04)
tagged arcade fire, en, live, music, terry gilliam, the suburbs, unstaged, video, youtube - with 0 comment(s)

You might already know about the new Arcade Fire album, The Suburbs.

Even when is a good album, I think is by far the less interesting / innovative / emotional from the band (at least from the musical point of view, I didn't payed much attention to the lyrics yet), but I still love their live performance, and I've came across the Unstaged series at the Madison Square Garden and directed by Terry Gilliam. The videos are available in YouTube in HD (many thanks to youtube-dl [*] that let me see the concert without suffering the f*cking Flash Player).

Here is Sprawl II (Mountains Beyond Mountains), my favourite song from the new album:

Update

You can download all the videos in HD using youtube-dl with this small bash script:

for i in h0DpBOYzXcQ 5pp3olGyku0 TtbrY6QrgPw 7vS5crSXJ6k GGdyG_83nX4 \
      DSykB-j_2UQ Q2T-ZAharmY 0L6ZFhZVOx0 CLjrQ3cwzJ4 RdYyYFymH-Y \
      sVW9usMRgNE bjhAP3V1o0w Q7fRvPjKDLs N9WR_eK0Rac bhwdd_01Ots \
      0ozdCLrTrtA diK1tZOXgDk 0ozdCLrTrtA aXuymDSGCko MQvZ4N1RfS8 \
      siFsdInZqC0 MXJi5_yThNY
do
   youtube-dl -f 37 -t "http://www.youtube.com/watch?v=$i"
done
[*]Tip: Download the files using the option -f 37 to get the HD version =)

Newton Faulkner

by Leandro Lucarella on 2010- 08- 16 04:26 (updated on 2010- 08- 16 04:26)
tagged bohemian rhapsody, cover, es, music, newton faulkner, teardrop, video, youtube - with 0 comment(s)

A través de esteifri llegué a estos de videos del muchacho Newton Faulkner en los que realmente muestra una habilidad sorprendente (me hicieron acordar a Mister Orkester pero solo con una guitarra).

Cover de Teardrop:

Cover de Bohemian Rhapsody:

Cover de Here Comes the Sun:

Si se quedaron con ganas hay una playlist con más videos (pero por lo que vi, estos son los mejores lejos).

TypeInfo, static data and the GC

by Leandro Lucarella on 2010- 08- 16 00:39 (updated on 2010- 08- 16 00:39)
tagged cdgc, conservative, d, dgc, en, gc, precise, static data, typeinfo - with 0 comment(s)

The D compiler doesn't provide any information on the static data that the GC must scan, so the runtime/GC have to use OS-dependant tricks to get that information.

Right now, in Linux, the GC gets the static data to scan from the libc's variables __data_start and _end, from which are not much information floating around except for some e-mail from Hans Boehm to the binutils mainling list.

There is a lot of stuff in the static data that doesn't need to be scanned, most notably the TypeInfo, which is a great portion of the static data. C libraries static data, for example, would be scanned too, when it makes no sense to do so.

I noticed CDGC has more than double the static data the basic GC has, just because of TypeInfo (I use about 5 or so more types, one of them is a template, which makes the bloat bigger).

The voronoi test goes from 21KB to 26KB of static data when using CDGC.

It would be nice if the compiler could group all the static that must really be scanned (programs static variables) together and make its limits available to the GC. It would be even nicer to leave static variables that have no pointers out of that group, and even much more nicer to create a pointer map like the one in the patch for precise scanning to allow precise heap scanning. Then only the scan should be scanned in full conservative mode.

I reported a bug with this issue so it doesn't get lost.

Memory allocation patterns

by Leandro Lucarella on 2010- 08- 14 06:28 (updated on 2010- 08- 14 16:09)
tagged allocation, benchmark, cdgc, d, dgc, dil, en, gc, memory, pattern - with 0 comment(s)

Note

Tango 0.99.9 has a bug in its runtime, which sometimes makes the GC scan memory that should not be scanned. It only affects Dil and Voronoi programs, but in a significant way. The tests in this post are done using a patched runtime, with the bug fixed.

Update

The results for the unpublished programs are now available. You can find the graphic results, the detailed summary and the source code for all the programs (except dil, which can be downloaded from its home site).

After seeing some weird behaviours and how different benchmarks are more or less affected by changes like memory addresses returned by the OS or by different ways to store the type information pointer, I decided to gather some information about how much and what kind of memory are requested by the different benchmarks.

I used the information provided by the malloc_stats_file CDGC option, and generated some stats.

The analysis is done on the allocations requested by the program (calls to gc_malloc()) and contrasting that with the real memory allocated by the GC. Note that only the GC heap memory (that is, memory dedicated to the program, which the GC scans in the collections) is counted (internal GC memory used for bookkeeping is not).

Also note that in this post I generally refer to object meaning a block of memory, it doesn't mean they are actually instance of a class or anything. Finally bear in mind that all the figures shown here are the sum of all the allocations done in the life of a program. If the collected data says a program requested 1GiB of memory, that doesn't mean the program had a residency of 1GiB, the program could had a working set of a few KiB and recycled memory like hell.

When analyzing the real memory allocated by the GC, there are two modes being analyzed, one is the classic conservative mode and the other is the precise mode (as it is in the original patch, storing the type information pointer at the end of the blocks). So the idea here is to measure two major things:

  • The amount of memory wasted by the GC because of how it arranges memory as fixed-size blocks (bins) and large objects that uses whole pages.
  • The extra amount of memory wasted by the GC when using precise mode because it stores the type information pointer at the end of the blocks.

I've selected a few representative benchmarks. Here are the results:

bh allocation pattern

This is a translation by Leonardo Maffi from the Olden Benchmark that does a Barnes–Hut simulation. The program is CPU intensive an does a lot of allocation of about 5 different small objects.

Here is a graphic summary of the allocation requests and real allocated memory for a run with -b 4000:

https://llucax.com/blog/posts/2010/08/14-memory-allocation/bh.rq.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/bh.rq.bin.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/bh.ws.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/bh.ws.bin.png

We can easily see here how the space wasted by the GC memory organization is significant (about 15% wasted), and how the type information pointer is adding an even more significant overhead (about 36% of the memory is wasted). This means that this program will be 15% more subject to false pointers (and will have to scan some extra memory too, but fortunately the majority of the memory doesn't need to be scanned) than it should in conservative mode and that the precise mode makes things 25% worse.

You can also see how the extra overhead in the precise mode is because some objects that should fit in a 16 bin now need a 32 bytes bin to hold the extra pointer. See how there were no waste at all in the conservative mode for objects that should fit a 16 bytes bin. 117MiB are wasted because of that.

Here is a more detailed (but textual) summary of the memory requested and allocated:

Requested
Total
15,432,462 objecs, 317,236,335 bytes [302.54MiB]
Scanned
7,757,429 (50.27%) objecs, 125,360,510 bytes [119.55MiB] (39.52%)
Not scanned
7,675,033 (49.73%) objecs, 191,875,825 bytes [182.99MiB] (60.48%)
Different object sizes
8
Objects requested with a bin size of:
16 bytes
7,675,064 (49.73%) objects, 122,801,024 bytes [117.11MiB] (38.71%)
32 bytes
7,734,214 (50.12%, 99.85% cumulative) objects, 193,609,617 bytes [184.64MiB] (61.03%, 99.74% cumulative)
64 bytes
23,181 (0.15%, 100% cumulative) objects, 824,988 bytes [805.65KiB] (0.26%, 100% cumulative)
256 bytes
2 (0%, 100% cumulative) objects, 370 bytes (0%, 100% cumulative)
512 bytes
1 (0%, 100% cumulative) objects, 336 bytes (0%, 100% cumulative)
Allocated
Conservative mode
Total allocated
371,780,480 bytes [354.56MiB]
Total wasted
54,544,145 bytes [52.02MiB], 14.67%
Wasted due to objects that should use a bin of
16 bytes
0 bytes (0%)
32 bytes
53,885,231 bytes [51.39MiB] (98.79%, 98.79% cumulative)
64 bytes
658,596 bytes [643.16KiB] (1.21%, 100% cumulative)
256 bytes
142 bytes (0%, 100% cumulative)
512 bytes
176 bytes (0%, 100% cumulative)
Precise mode
Total allocated
495,195,296 bytes [472.26MiB]
Total wasted
177,958,961 bytes [169.71MiB], 35.94%
Wasted due to objects that should use a bin of
16 bytes
122,801,024 bytes [117.11MiB] (69.01%)
32 bytes
54,499,023 bytes [51.97MiB] (30.62%, 99.63% cumulative)
64 bytes
658,596 bytes [643.16KiB] (0.37%, 100% cumulative)
256 bytes
142 bytes (0%, 100% cumulative)
512 bytes
176 bytes (0%, 100% cumulative)

bigarr allocation pattern

This is a extremely simple program that just allocate a big array of small-medium objects (all of the same size) I found in the D NG.

Here is the graphic summary:

https://llucax.com/blog/posts/2010/08/14-memory-allocation/bigarr.rq.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/bigarr.rq.bin.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/bigarr.ws.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/bigarr.ws.bin.png

The only interesting part of this test is how many space is wasted because of the memory organization, which in this case goes up to 30% for the conservative mode (and have no change for the precise mode).

Here is the detailed summary:

Requested
Total
12,000,305 objecs, 1,104,160,974 bytes [1.03GiB]
Scanned
12,000,305 (100%) objecs, 1,104,160,974 bytes [1.03GiB] (100%)
Not scanned
0 (0%) objecs, 0 bytes (0%)
Different object sizes
5
Objects requested with a bin size of
128 bytes
12,000,000 (100%, 100% cumulative) objects, 1,056,000,000 bytes [1007.08MiB] (95.64%, 95.64% cumulative)
256 bytes
2 (0%, 100% cumulative) objects, 322 bytes (0%, 95.64% cumulative)
512 bytes
1 (0%, 100% cumulative) objects, 336 bytes (0%, 95.64% cumulative)
more than a page
302 (0%) objects, 48,160,316 bytes [45.93MiB] (4.36%)
Allocated
Conservative mode
Total allocated
1,584,242,808 bytes [1.48GiB]
Total wasted
480,081,834 bytes [457.84MiB], 30.3%
Wasted due to objects that should use a bin of
128 bytes
480,000,000 bytes [457.76MiB] (99.98%, 99.98% cumulative)
256 bytes
190 bytes (0%, 99.98% cumulative)
512 bytes
176 bytes (0%, 99.98% cumulative)
more than a page
81,468 bytes [79.56KiB] (0.02%)
Precise mode
Total allocated
1,584,242,808 bytes [1.48GiB]
Total wasted
480,081,834 bytes [457.84MiB], 30.3%
Wasted due to objects that should use a bin of:
128 bytes
480,000,000 bytes [457.76MiB] (99.98%, 99.98% cumulative)
256 bytes
190 bytes (0%, 99.98% cumulative)
512 bytes
176 bytes (0%, 99.98% cumulative)
more than a page
81,468 bytes [79.56KiB] (0.02%)

mcore allocation pattern

This is program that test the contention produced by the GC when appending to (thread-specific) arrays in several threads concurrently (again, found at the D NG). For this analysis the concurrency doesn't play any role though, is just a program that do a lot of appending to a few arrays.

Here are the graphic results:

https://llucax.com/blog/posts/2010/08/14-memory-allocation/mcore.rq.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/mcore.rq.bin.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/mcore.ws.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/mcore.ws.bin.png

This is the most boring of the examples, as everything works as expected =)

You can clearly see how the arrays grow, passing through each bin size and finally becoming big objects which take most of the allocated space. Almost nothing need to be scanned (they are int arrays), and practically there is no waste. That's a good decision by the array allocation algorithm, which seems to exploit the bin sizes to the maximum. Since almost all the data is doesn't need to be scanned, there is no need to store the type information pointers, so there is no waste either for the precise mode (the story would be totally different if the arrays were of objects that should be scanned, as probably each array allocation would waste about 50% of the memory to store the type information pointer).

Here is the detailed summary:

Requested
Total requested
367 objecs, 320,666,378 bytes [305.81MiB]
Scanned
8 (2.18%) objecs, 2,019 bytes [1.97KiB] (0%)
Not scanned
359 (97.82%) objecs, 320,664,359 bytes [305.81MiB] (100%)
Different object sizes
278
Objects requested with a bin size of
16 bytes
4 (1.09%) objects, 20 bytes (0%)
32 bytes
5 (1.36%, 2.45% cumulative) objects, 85 bytes (0%, 0% cumulative)
64 bytes
4 (1.09%, 3.54% cumulative) objects, 132 bytes (0%, 0% cumulative)
128 bytes
4 (1.09%, 4.63% cumulative) objects, 260 bytes (0%, 0% cumulative)
256 bytes
6 (1.63%, 6.27% cumulative) objects, 838 bytes (0%, 0% cumulative)
512 bytes
9 (2.45%, 8.72% cumulative) objects, 2,708 bytes [2.64KiB] (0%, 0% cumulative)
1024 bytes
4 (1.09%, 9.81% cumulative) objects, 2,052 bytes [2KiB] (0%, 0% cumulative)
2048 bytes
4 (1.09%, 10.9% cumulative) objects, 4,100 bytes [4KiB] (0%, 0% cumulative)
4096 bytes
4 (1.09%, 11.99% cumulative) objects, 8,196 bytes [8KiB] (0%, 0.01% cumulative)
more than a page
323 (88.01%) objects, 320,647,987 bytes [305.79MiB] (99.99%)
Allocated
Conservative mode
Total allocated
321,319,494 bytes [306.43MiB]
Total wasted
653,116 bytes [637.81KiB], 0.2%
Wasted due to objects that should use a bin of
16 bytes
44 bytes (0.01%)
32 bytes
75 bytes (0.01%, 0.02% cumulative)
64 bytes
124 bytes (0.02%, 0.04% cumulative)
128 bytes
252 bytes (0.04%, 0.08% cumulative)
256 bytes
698 bytes (0.11%, 0.18% cumulative)
512 bytes
1,900 bytes [1.86KiB] (0.29%, 0.47% cumulative)
1024 bytes
2,044 bytes [2KiB] (0.31%, 0.79% cumulative)
2048 bytes
4,092 bytes [4KiB] (0.63%, 1.41% cumulative)
4096 bytes
8,188 bytes [8KiB] (1.25%, 2.67% cumulative)
more than a page
635,699 bytes [620.8KiB] (97.33%)
Precise mode
Total allocated
321,319,494 bytes [306.43MiB]
Total wasted
653,116 bytes [637.81KiB], 0.2%
Wasted due to objects that should use a bin of
16 bytes
44 bytes (0.01%)
32 bytes
75 bytes (0.01%, 0.02% cumulative)
64 bytes
124 bytes (0.02%, 0.04% cumulative)
128 bytes
252 bytes (0.04%, 0.08% cumulative)
256 bytes
698 bytes (0.11%, 0.18% cumulative)
512 bytes
1,900 bytes [1.86KiB] (0.29%, 0.47% cumulative)
1024 bytes
2,044 bytes [2KiB] (0.31%, 0.79% cumulative)
2048 bytes
4,092 bytes [4KiB] (0.63%, 1.41% cumulative)
4096 bytes
8,188 bytes [8KiB] (1.25%, 2.67% cumulative)
more than a page
635,699 bytes [620.8KiB] (97.33%)

voronoi allocation pattern

This is one of my favourites, because is always problematic. It "computes the voronoi diagram of a set of points recursively on the tree" and is also taken from the Olden Benchmark and translated by Leonardo Maffi to D.

Here are the graphic results for a run with -n 30000:

https://llucax.com/blog/posts/2010/08/14-memory-allocation/voronoi.rq.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/voronoi.rq.bin.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/voronoi.ws.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/voronoi.ws.bin.png

This have a little from all the previous examples. Practically all the heap should be scanned (as in bigarr), it wastes a considerably portion of the heap because of the fixed-size blocks (as all but mcore), it wastes just a very little more because of type information (as all but bh) but that waste comes from objects that should fit in a 16 bytes bin but is stored in a 32 bytes bin instead (as in bh).

Maybe that's why it's problematic, it touches a little mostly all the GC flaws.

Here is the detailed summary:

Requested
Total requested
1,309,638 objecs, 33,772,881 bytes [32.21MiB]
Scanned
1,309,636 (100%) objecs, 33,772,849 bytes [32.21MiB] (100%)
Not scanned
2 (0%) objecs, 32 bytes (0%)
Different object sizes
6
Objects requested with a bin size of
16 bytes
49,152 (3.75%) objects, 786,432 bytes [768KiB] (2.33%)
32 bytes
1,227,715 (93.74%, 97.5% cumulative) objects, 31,675,047 bytes [30.21MiB] (93.79%, 96.12% cumulative)
64 bytes
32,768 (2.5%, 100% cumulative) objects, 1,310,720 bytes [1.25MiB] (3.88%, 100% cumulative)
256 bytes
2 (0%, 100% cumulative) objects, 346 bytes (0%, 100% cumulative)
512 bytes
1 (0%, 100% cumulative) objects, 336 bytes (0%, 100% cumulative)
Allocated
Conservative mode
Total allocated
42,171,488 bytes [40.22MiB]
Total wasted
8,398,607 bytes [8.01MiB], 19.92%
Wasted due to objects that should use a bin of
16 bytes
0 bytes (0%)
32 bytes
7,611,833 bytes [7.26MiB] (90.63%, 90.63% cumulative)
64 bytes
786,432 bytes [768KiB] (9.36%, 100% cumulative)
256 bytes
166 bytes (0%, 100% cumulative)
512 bytes
176 bytes (0%, 100% cumulative)
Precise mode
Total allocated
42,957,888 bytes [40.97MiB]
Total wasted
9,185,007 bytes [8.76MiB], 21.38%
Wasted due to objects that should use a bin of
16 bytes
786,400 bytes [767.97KiB] (8.56%)
32 bytes
7,611,833 bytes [7.26MiB] (82.87%, 91.43% cumulative)
64 bytes
786,432 bytes [768KiB] (8.56%, 100% cumulative)
256 bytes
166 bytes (0%, 100% cumulative)
512 bytes
176 bytes (0%, 100% cumulative)

Dil allocation pattern

Finally, this is by far my favourite, the only real-life program, and the most colorful example (literally =).

Dil is a D compiler, and as such, it works a lot with strings, a lot of big chunks of memory, a lot of small objects, it has it all! String manipulation stress the GC a lot, because it uses objects (blocks) of all possible sizes ever, specially extremely small objects (less than 8 bytes, even a lot of blocks of just one byte!).

Here are the results of a run of Dil to generate Tango documentation (around 555 source files are processed):

https://llucax.com/blog/posts/2010/08/14-memory-allocation/dil.rq.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/dil.rq.bin.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/dil.ws.tot.png https://llucax.com/blog/posts/2010/08/14-memory-allocation/dil.ws.bin.png

Didn't I say it was colorful?

This is like the voronoi but taken to the extreme, it really have it all, it allocates all types of objects in significant quantities, it wastes a lot of memory (23%) and much more when used in precise mode (33%).

Here is the detailed summary:

Requested
Total
7,307,686 objecs, 322,411,081 bytes [307.48MiB]
Scanned
6,675,124 (91.34%) objecs, 227,950,157 bytes [217.39MiB] (70.7%)
Not scanned
632,562 (8.66%) objecs, 94,460,924 bytes [90.08MiB] (29.3%)
Different object sizes
6,307
Objects requested with a bin size of
16 bytes
2,476,688 (33.89%) objects, 15,693,576 bytes [14.97MiB] (4.87%)
32 bytes
3,731,864 (51.07%, 84.96% cumulative) objects, 91,914,815 bytes [87.66MiB] (28.51%, 33.38% cumulative)
64 bytes
911,016 (12.47%, 97.43% cumulative) objects, 41,918,888 bytes [39.98MiB] (13%, 46.38% cumulative)
128 bytes
108,713 (1.49%, 98.91% cumulative) objects, 8,797,572 bytes [8.39MiB] (2.73%, 49.11% cumulative)
256 bytes
37,900 (0.52%, 99.43% cumulative) objects, 6,354,323 bytes [6.06MiB] (1.97%, 51.08% cumulative)
512 bytes
22,878 (0.31%, 99.75% cumulative) objects, 7,653,461 bytes [7.3MiB] (2.37%, 53.45% cumulative)
1024 bytes
7,585 (0.1%, 99.85% cumulative) objects, 4,963,029 bytes [4.73MiB] (1.54%, 54.99% cumulative)
2048 bytes
3,985 (0.05%, 99.9% cumulative) objects, 5,451,493 bytes [5.2MiB] (1.69%, 56.68% cumulative)
4096 bytes
2,271 (0.03%, 99.93% cumulative) objects, 6,228,433 bytes [5.94MiB] (1.93%, 58.61% cumulative)
more than a page
4,786 (0.07%) objects, 133,435,491 bytes [127.25MiB] (41.39%)
Allocated
Conservative mode
Total allocated
419,368,774 bytes [399.94MiB]
Total wasted
96,957,693 bytes [92.47MiB], 23.12%
Wasted due to objects that should use a bin of
16 bytes
23,933,432 bytes [22.82MiB] (24.68%)
32 bytes
27,504,833 bytes [26.23MiB] (28.37%, 53.05% cumulative)
64 bytes
16,386,136 bytes [15.63MiB] (16.9%, 69.95% cumulative)
128 bytes
5,117,692 bytes [4.88MiB] (5.28%, 75.23% cumulative)
256 bytes
3,348,077 bytes [3.19MiB] (3.45%, 78.68% cumulative)
512 bytes
4,060,075 bytes [3.87MiB] (4.19%, 82.87% cumulative)
1024 bytes
2,804,011 bytes [2.67MiB] (2.89%, 85.76% cumulative)
2048 bytes
2,709,787 bytes [2.58MiB] (2.79%, 88.56% cumulative)
4096 bytes
3,073,583 bytes [2.93MiB] (3.17%, 91.73% cumulative)
more than a page
8,020,067 bytes [7.65MiB] (8.27%)
Precise mode:
Total allocated
482,596,774 bytes [460.24MiB]
Total wasted
160,185,693 bytes [152.76MiB], 33.19%
Wasted due to objects that should use a bin of
16 bytes
26,820,824 bytes [25.58MiB] (16.74%)
32 bytes
85,742,913 bytes [81.77MiB] (53.53%, 70.27% cumulative)
64 bytes
18,070,872 bytes [17.23MiB] (11.28%, 81.55% cumulative)
128 bytes
5,221,884 bytes [4.98MiB] (3.26%, 84.81% cumulative)
256 bytes
3,400,557 bytes [3.24MiB] (2.12%, 86.93% cumulative)
512 bytes
4,125,611 bytes [3.93MiB] (2.58%, 89.51% cumulative)
1024 bytes
2,878,763 bytes [2.75MiB] (1.8%, 91.31% cumulative)
2048 bytes
2,760,987 bytes [2.63MiB] (1.72%, 93.03% cumulative)
4096 bytes
3,143,215 bytes [3MiB] (1.96%, 94.99% cumulative)
more than a page
8,020,067 bytes [7.65MiB] (5.01%)

Conclusion

I've analyzed other small fabricated benchmarks, but all of them had results very similar to the ones shown here.

I think the overallocation problem is more serious than what one might think at first sight. Bear in mind this is not GC overhead, is not because of internal GC data. Is memory the GC or the mutator cannot use. Is memory wasted because of fragmentation (planned fragmentation, but fragmentation at least). And I don't think this is the worse problem. The worse problem is, this memory will need to be scanned in most cases (Dil needs to scan 70% of the total memory requested), and maybe the worse of all is that is subject to false pointer. A false pointer to a memory location that is not actually being used by the program will keep the block alive! If is a large object (several pages) that could be pretty nasty.

This problems can be addressed in several ways. One is mitigate the problem by checking (when type information is available) what portions of the memory is really used and what is wasted, and don't keep things alive when they are only pointed to wasted memory. This is not free though, it will consume more CPU cycles so the solution could be worse than the problem.

I think it worth experimenting with other heap organizations, for example, I would experiment with one free list for object size instead of pre-fixed-sizes. I would even experiment with a free list for each type when type information is available, that would save a lot of space (internal GC space) when storing type information. Some specialization for strings could be useful too.

Unfortunately I don't think I'll have the time to do this, at least for the thesis, but I think is a very rich and interesting ground to experiment.

Add PC-beep whitelist for an Intel board

by Leandro Lucarella on 2010- 08- 11 00:49 (updated on 2010- 08- 11 00:49)
tagged 2.6.35, beep, bios, en, git, intel, kernel, linux, patch - with 0 comment(s)

Yaii! My beep will be back in the next kernel release :)

This is a note to let you know that I've just added the patch titled

    ALSA: hda - Add PC-beep whitelist for an Intel board

to the 2.6.35-stable tree which can be found at:
    http://www.kernel.org/git/?p=linux/kernel/git/stable/stable-queue.git;a=summary

The filename of the patch is:
    ../tmp/alsa-hda-add-pc-beep-whitelist-for-an-intel-board.patch
and it can be found in the queue-2.6.35 subdirectory.

If you, or anyone else, feels it should not be added to the stable tree,
please let <stable@kernel.org> know about it.


>From e096c8e6d5ed965f346d94befbbec2275dde3621 Mon Sep 17 00:00:00 2001
From: Takashi Iwai <tiwai@suse.de>
Date: Tue, 3 Aug 2010 17:20:35 +0200
Subject: ALSA: hda - Add PC-beep whitelist for an Intel board

From: Takashi Iwai <tiwai@suse.de>

commit e096c8e6d5ed965f346d94befbbec2275dde3621 upstream.

An Intel board needs a white-list entry to enable PC-beep.
Otherwise the driver misdetects (due to bogus BIOS info) and ignores
the PC-beep on 2.6.35.

Reported-and-tested-by: Leandro Lucarella <luca@llucax.com>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

---
 sound/pci/hda/patch_realtek.c |    1 +
 1 file changed, 1 insertion(+)

--- a/sound/pci/hda/patch_realtek.c
+++ b/sound/pci/hda/patch_realtek.c
@@ -5183,6 +5183,7 @@ static void fillup_priv_adc_nids(struct

 static struct snd_pci_quirk beep_white_list[] = {
        SND_PCI_QUIRK(0x1043, 0x829f, "ASUS", 1),
+       SND_PCI_QUIRK(0x8086, 0xd613, "Intel", 1),
        {}
 };



Patches currently in stable-queue which might be from tiwai@suse.de are

queue-2.6.35/alsa-hda-add-pc-beep-whitelist-for-an-intel-board.patch

If you feel it should not be added to the stable tree, and let <stable@kernel.org> know about it, I kill you!.

GWENE

by Leandro Lucarella on 2010- 08- 10 01:25 (updated on 2010- 08- 10 01:25)
tagged en, feed, gateway, gmane, gwene, news, nntp, rss - with 0 comment(s)

Don't you love GMANE? I know I do, and now I can read my favourite RSS feeds via GWENE too. I even noticed it existence because I way a bunch of new newsgroups under the top-level name gwene.

GDC activity

by Leandro Lucarella on 2010- 08- 10 01:21 (updated on 2010- 08- 10 01:21)
tagged activity, d, dmd, en, floss, gcc, gdc - with 0 comment(s)

There is a lot of activity lately in the GDC world, both the repository and the mailing list (mostly closed bug reports notification).

The reborn of GDC is a courtesy of Vincenzo Ampolo (AKA goshawk) and Michael P. (I'm sorry, I couldn't find his last name), but it received a big boost lately since Iain Buclaw (apparently from Ubuntu, judging from his e-mail address) got commit access to the repository in July.

They are working in updating both the DMD front-end and the GCC back-end and judging from the commits, the front-end is updated to DMD 1.062 and 2.020 (they are working on Druntime integration now) and the back-end works with GCC 3.4, 4.1, 4.2, 4.3 and 4.4 is in the works.

Really great news! Thanks for the good work!

Lo' redó

by Leandro Lucarella on 2010- 08- 09 03:30 (updated on 2010- 08- 09 03:30)
tagged es, music, patricio rey y sus redonditos de ricota - with 0 comment(s)

¡No lo puedo creer! ¡Acabo de descubrir un tema de Los Redondos que me gusta!

El tema se llama Pensando como una acelga y es de Momo Sampler (2000) y sorprendentemente tiene arreglos y sutileza que lo separan un poco de los clásicos temas fierita (no se dejen engañar por el comienzo).

Jamás creí que este momento iba a llegar...

Type information at the end of the block considered harmful

by Leandro Lucarella on 2010- 08- 07 17:24 (updated on 2010- 08- 09 13:22)
tagged benchmark, cdgc, d, dgc, en, gc, precise - with 0 comment(s)

Yes, I know I'm not Dijkstra, but I always wanted to do a considered harmful essay =P

And I'm talking about a very specific issue, so this will probably a boring reading for most people :)

This is about my research in D garbage collection, the CDGC, and related to a recent post and the precise heap scanning patch.

I've been playing with the patch for a couple of weeks now, and even when some of the tests in my benchmark became more stable, other tests had the inverse effect, and other tests even worsen their performance.

The extra work done by the patch should not be too significant compared with the work it avoids by no scanning things that are no pointers, so the performance, intuitively speaking, should be considerably increased for test that have a lot of false pointers and for the other tests, at least not be worse or less stable. But that was not what I observed.

I finally got to investigate this issue, and found out that when the precise version was clearly slower than the Tango basic collector, it was due to a difference in the number of collections triggered by the test. Sometimes a big difference, and sometimes with a lot of variation. The number usually never approached to the best value achieved by the basic collector.

For example, the voronoi test with N = 30_000, the best run with the basic collector triggered about 60 collections, varying up to 90, while the precise scanning triggered about 80, with very little variation. Even more, if I ran the tests using setarch to avoid heap addresses randomization (see the other post for details), the basic collector triggered about 65 collections always, while the precise collector still triggered 80, so there was something wrong with the precise scanning independently of the heap addresses.

So the suspicions I had about storing the type information pointer at the end of the block being the cause of the problem became even more suspicious. So I added an option to make the precise collector conservative. The collection algorithm, that changed between collectors, was untouched, the precise collector just don't store the type information when is configured in conservative mode, so it scans all the memory as if it didn't had type information. The results where almost the same as the basic collector, so the problem really was the space overhead of storing the type information in the same blocks the mutator stores it's data.

It looks like the probability of keeping blocks alive incorrectly because of false pointer, even when they came just from the static data and the stack (and other non-precise types, like unions) is increased significantly because of the larger blocks.

The I tried to strip the programs (all the test were using programs with debug info to ease the debugging when I brake the GC :), and the number of collections decreased considerably in average, and the variation between runs too. So it looks like that in the scanned static data are included the debug symbols or there is something else adding noise. This for both precise and conservative scanning, but the effect is worse with precise scanning. Running the programs without heap address randomization (setarch -R), usually decreases the number of collections and the variance too.

Finally, I used a very naïve (but easy) way of storing the type information pointers outside the GC scanned blocks, wasting 25% of space just to store this information (as explained in a comment to the bug report), but I insist, that overhead is outside the GC scanned blocks, unlike the small overhead imposed by storing a pointer at the end of that blocks. Even with such high memory overhead, the results were surprising, the voronoi number of collections doing precise scanning dropped to about 68 (very stable) and the total runtime was a little smaller than the best basic GC times, which made less collections (and were more unstable between runs).

Note that there are still several test that are worse for the CDGC (most notably Dil, the only real-life application :), there are plenty of changes between both collectors and I still didn't look for the causes.

I'll try to experiment with a better way of storing the type information pointers outside the GC blocks, probably using a hash table.

At last but not least, here are some figures (basic is the Tango basic collector, cdgc is the CDGC collector with the specified modifications):

https://llucax.com/blog/posts/2010/08/06-type-conservative-nostripped.png

Precise scanning patch doing conservative scanning (not storing the type information at all).

https://llucax.com/blog/posts/2010/08/06-type-precise-nostripped.png

Precise scanning storing the type information at the end of the GC blocks.

https://llucax.com/blog/posts/2010/08/06-type-precise-noend-nostripped.png

Precise scanning storing the type information outside the GC blocks.

Here are the same tests, but with the binaries stripped:

https://llucax.com/blog/posts/2010/08/06-type-conservative.png

Precise scanning patch doing conservative scanning (not storing the type information at all). Stripped.

https://llucax.com/blog/posts/2010/08/06-type-precise.png

Precise scanning storing the type information at the end of the GC blocks. Stripped.

https://llucax.com/blog/posts/2010/08/06-type-precise-noend.png

Precise scanning storing the type information outside the GC blocks. Stripped.

Here are the same tests as above, but disabling Linux heap addresses randomization (setarch -R):

https://llucax.com/blog/posts/2010/08/06-type-conservative-nornd.png

Precise scanning patch doing conservative scanning (not storing the type information at all). Stripped. No addresses randomization.

https://llucax.com/blog/posts/2010/08/06-type-precise-nornd.png

Precise scanning storing the type information at the end of the GC blocks. Stripped. No addresses randomization.

https://llucax.com/blog/posts/2010/08/06-type-precise-noend-nornd.png

Precise scanning storing the type information outside the GC blocks. Stripped. No addresses randomization.

Update

I noticed that the plots doesn't always reflect 100% what's stated in the text, that is because the text was written with another run results and it seems like the tested programs are very sensitive to the heap and binary addresses the kernel assign to the program.

Anyway, what you can see in the plots very clear is how stripping the binaries changes the results a lot and how the performance is particularly improved when storing the type information pointer outside the GC'ed memory when the binaries are not stripped.